微信群二维码资源网是最专业微信群二维码发布平台,收集最新微信红包群、微信福利群、股票交流群、单身交友群等!
收录(25399)
您现在的位置: 微信群二维码首页 > 微信营销 > 营销推广 > 信誉的北京赛车靠谱微群

信誉的北京赛车靠谱微群

来源:【╇微5493313】   时间:2020-05-05 18:22:56  标签:
接待【╇微5493313】打造最火飞艇微信信誉平台极速时时实力信誉平台最有信誉PC28信誉平台

优点:NAS通过在所有可能的架构空间中进行搜索,而不需要任何人工干预,自动平衡准确性、内存和延迟之间的权衡。NAS能够在许多移动设备上实现准确性、能耗的最佳性能。

缺点及改进方向:计算量太大,导致很难去搜索大型数据集上任务的架构。另外,要想找到满足性能需求的架构,必须对每个候选架构进行训练,并在目标设备上运行来生成奖励函数,这会导致较高的计算成本。其实,可以将候选DNN在数据的不同子集上进行并行训练,从而减少训练时间;从不同数据子集得到的梯度可以合并成一个经过训练的DNN。不过这种并行训练方法可能会导致较低的准确性。另一方面,在保持高收敛率的同时,利用自适应学习率可以提高准确性。

四、知识迁移和蒸馏

大模型比小模型更准确,因为参数越多,允许学习的函数就可以越复杂。那么能否用小的模型也学习到这样复杂的函数呢?

一种方式便是知识迁移(Knowledge Transfer),通过将大的DNN模型获得的知识迁移到小的DNN模型上。为了学习复杂函数,小的DNN模型会在大的DNN模型标记处的数据上进行训练。其背后的思想是,大的DNN标记的数据会包含大量对小的DNN有用的信息。例如大的DNN模型对一个输入图像在一些类标签上输出中高概率,那么这可能意味着这些类共享一些共同的视觉特征;对于小的DNN模型,如果去模拟这些概率,相比于直接从数据中学习,要能够学到更多。

另一种技术是Hinton老爷子在2014年提出的知识蒸馏(Knowledge Distillation),这种方法的训练过程相比于知识迁移要简单得多。在知识蒸馏中,小的DNN模型使用学生-教师模式进行训练,其中小的DNN模型是学生,一组专门的DNN模型是教师;通过训练学生,让它模仿教师的输出,小的DNN模型可以完成整体的任务。但在Hinton的工作中,小的DNN模型的准确度却相应有些下降。Li等人利用最小化教师与学生之间特征向量的欧氏距离,进一步提高的小的DNN模型的精度。类似的,FitNet让学生模型中的每一层都来模仿教师的特征图。但以上两种方法都要求对学生模型的结构做出严格的假设,其泛化性较差。为了解决这一问题,Peng等人使用了指标间的相关性作为优化问题。

登录

 账号密码登录

 注册会员

发布咨询:
点击这里给我发消息

在线客服:
点击这里给我发消息

商务合作:
点击这里给我发消息

服务时间:
9:00-18:00(工作日)